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This is a
Abstract – This study assessed the environmental factors underlying the leaf litter decomposition rate in
streams in the equatorial rainforest of Cameroon. To reach this goal we used the litterbag method and dead
leaves of Funtumia africana (Benth) Stapf (Apocynaceae)in seven natural streams. Concomitantly, we
measured biological (fungi and macroinvertebrates) and environmental parameters to highlight those that
control the leaf litter breakdown rates. The breakdown rates ranged from 0.035 to 0.056 with an average of
0.042 ± 0.006 in the coarse-mesh litterbags (Kc) and from 0.018 to 0.059 with an average of 0.037 ± 0.01 in
the fine-mesh litterbags (Kf). No significant difference was observed between seasons or sites, except for Kf..
As in other tropical rainforests in South America and Asia, the breakdown rates are mainly resulted from
microbial activity; the contribution of shredders was negligible, as confirmed by the Kc to Kf ratio and the
litter fragmentation rate lF. Among environmental factors, only the distance from the source and the pH
were positively correlated with the leaf litter breakdown rates.

Keywords: litter decomposition / macroinvertebrates / hyphomycetes / environmental factors / tropical streams /
Central Africa
1 Introduction

Aquatic ecosystems are influenced by the landscape
(Vannote et al., 1980; Allan et al., 2021a, 2021b) because
they receive substantial inputs from surrounding lands (Fausch
et al., 2002; Townsend et al., 2003). These inputs constitute a
transfer of mineral and organic matter (Masese et al., 2018). In
forested ecosystems, the supply of mainly dead plant matter is
quite significant. The decomposition of these organic matters is
an important ecosystem process in the aquatic food web
(Wallace and Webster, 1996; Covich et al., 2004). They
provide nutrients for aquatic plants and organic matter for
aquatic organisms, mainly aquatic hyphomycetes and detri-
tivorous invertebrates (Petersen and Cummins, 1974; Gessner
et al., 1999).

In temperate climate, many studies on the process of litter
breakdown in streams have shown a strong contribution of
detritivorous invertebrates to the litter breakdown process in
streams (Gessner et al., 1999; Gulis et al., 2006; Piscart et al.,
2009, 2011; Chauvet et al., 2016). This is particularly true in
streams harbouring amphipods, which can be considered and a
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key species of leaf litter breakdown in temperate streams
(Piscart et al., 2017). However, many environmental factors
mediate the breakdown rates, and this process is very sensitive
to changes in environmental conditions (Dangles et al., 2004;
Boyero et al., 2016; Follstad Shah et al., 2017). Among
physico-chemical factors, inorganic nutrients dissolved in
water play a major role in litter breakdown (Jabiol et al., 2019;
Abelho and Descals, 2024) and limit its colonization by
microorganisms (Madeiros et al., 2015). The hydraulic
conditions, the streambed roughness and other local hetero-
geneities also influence the breakdown rates of leaf litter
(Omoniyi et al., 2021), while the water temperature promotes
decomposition, especially through microbial activity (Ferreira
et al., 2012; Boyero et al., 2021). Among biological factors,
the quality of litter (Foucreau et al., 2013a, 2013b) and the
diversity of shredder organisms also influence the breakdown
process (Schindler, 2006; Schindler and Gessner, 2009;
Gessner, 2010; Santonja et al., 2018, 2020). This is why
there has been growing interest in the use of leaf litter
breakdown in recent years to assess the functional integrity of
stream ecosystems (Gessner and Chauvet, 2002; Casas et al.,
2011; Chauvet et al., 2016; Ferreira et al., 2021; Omoniyi
et al., 2021).
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In tropical � especially rainforest � streams, plant
production is greater within a much higher temperature range
than in temperate zones (Wantzen et al., 2008; Bruder et al.,
2014; Boyero et al., 2015a). The climate, anthropogenic
activities and the hydrological regime are very different
(Bernhard-Reversat, 1982; McMahon et al., 1992; Tiegs et al.,
2024). In South America (mainly Brazil, Panama), South Asia
(China, Malaysia, Indonesia, India) and Oceania (Australia,
Papua New Guinea), biological communities in streams differ
from those of temperate zones (Benstead, 1996; Yule, 1996;
Boyero et al., 2009; Yule et al., 2009). For example, shredders
are scarce in tropical streams (Dobson et al., 2002), whereas
they are the main players of breakdown in European streams
(Boyero et al., 2006; Wantzen and Wagner, 2006; Boulton
et al., 2008; Bruder et al., 2014).

In Sub-Saharan Africa, few studies on the process of leaf
litter breakdown in streams have been led, mainly in Kenya
(Mathooko et al., 2000a, 2000b; Dobson et al., 2004; Masese
et al., 2014a; Kadeka et al., 2021), in Guinea Conakry
(Tenkiano and Chauvet, 2017) and in Uganda (Fugère et al.,
2020). Among these studies, only the work of Fugère et al.
(2020) was focused on equatorial rainforest and on only four
sites, and the experimental design did not take microbial and/or
macroinvertebrate communities and physico-chemical param-
eters into account. As a consequence, the role played by
environmental factors in tropical rainforest in Africa remains
almost unknown.

Toaddress thisquestionand identify thedrivingfactorsof the
leaf litter breakdown in African streams, we selected 13 sites in
the natural rainforest of SouthCameroon. Themain goals of this
studywere (1) to highlight the biological (macroinvertebrate and
fungi assemblages) and physico-chemical determinants of leaf
litter breakdown in equatorial streams in Cameroon, and (2) to
discuss those factors toother factors found in temperateandother
tropical streams in other regions.

2 Materials and methods

2.1 Study site

The study area was located in the equatorial rainforest of
Cameroon, between 3°20'�3°37' N and 11°26'�11°34' E
(Fig. 1). The climate is Guinean equatorial, with four seasons
that are unequal and whose duration varies across years. They
alternate as follows: a long dry season fromDecember to April,
a short rainy season from May to mid-July, a short dry season
from mid-July to September, and a long rainy season from
September to November. Rainfall varies from 1500 to
2000mm, and the hydrographic network is dense (Ndam
Ngoupayou et al., 1998). Average annual air temperature is
around 24.6 °C, with an annual average amplitude of 4.19 °C
according to satellite data from the Amercian National Oceanic
and Atmospheric Administration � Physical Sciences Labo-
ratory (US NOAA, 2022) over the February 2019 to February
2020 period (https://psl.noaa.gov/data/timeseries/). In the
study sites, soils can be one of three types: ferralitic soils
located at the top of interfluves and at the bottom of slopes,
hydromorphic soils in marshy valleys, or poorly evolved soils
located on steep mountainous reliefs (Olivry, 1986). The
vegetation is similar between sites, consisting of the dense
secondary evergreen rainforest at medium and high altitudes,
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and a dense semi-deciduous rainforest at high altitude
(Temgoua, 2007).

Thirteen sites located in seven forest streams were selected
(Fig. 1). The sites varied in their geomorphology in order to
represent the different types of stream in the study area. Table 1
shows the altitude, stream order, distance from the source,
water depth, water width and main substrate of each sampling
sites. Leaf litter exposure was measured in two different areas
during the long dry season in six sampling sites at the North
town of Mbalmayo town (K1, K2, K3, AN1, AN2, and N) in
February/March 2020, and during the short dry season in the
other seven sampling sites at South town (A, C, IM, NM, ON,
OB, Z) in August 2020. Each sampling site was selected on the
basis of the different stream orders and the hydrological
variables in order to be representative of the local environ-
mental conditions in headwater streams.

2.2 Environmental factors

The distances from the sampling stations to the source were
measured directly with a 1:25,000 map, while the coordinates
and the altitude of the sampling stations were taken with a
Gamin® 60S geo-positioning system. The weather parameters
were measured in the field using a Testo® 610 thermo-
hygrometer for the humidity percentage and a Testo® 540
luxmeter for the light intensity between 08:00 am and 10:00
am. The hydrological variables were measured at each
experimental site. The width of the water column was
measured using a decameter stretched horizontally from one
riverside to the other, depth was measured using a graduated
stake, and the current velocity was determined by pouring
methylene blue (a neutral and non-toxic dye) in the water and
measuring the distance covered by the dye in one minute.
Physico-chemical parameters (water temperature, dissolved
oxygen, pH, and electrical conductivity) were measured using
a Combo® Water Quality Meter 86031 multimeter in the field
following standard protocols (Rodier et al., 2009; American
Public Health Association et al., 2017).

2.3 Preparation of litterbags and leaf litter processing

The litter bags were made up of dead leaves of Funtumia
africana (Benth) Stapf (Apocynaceae) collected just after
abscission. We checked each leaf by naked eyes to remove
damaged and parasitised leaves. In the laboratory, the leaves
were spread over a large area for rapid drying in the open air for
15 days (Gessner and Chauvet, 2002). After drying, batches of
3 ± 0.01 g of litter were made up and placed in the litterbags.
Prior moistening with distilled water was necessary to avoid
damaging the leaves during field trips. The 10� 10 cm bags
were tetrahedron-shaped, and made of a coarse plastic mesh
(5mm mesh size) or a fine nylon mesh (0.5mm mesh size)
(Boulton and Boon, 1991; Cristiano et al., 2019).

The litterbags were prepared the day before they were
placed in the field, and stored in hermetically sealed plastic
bags to retain humidity. In the field, they were fixed in pairs
(one fine-mesh litterbag and one coarse-mesh litterbag) using
metal stakes (10–15mm in diameter and 1–1.5m in length)
using nylon cords (1mm in diameter) of different lengths to
guarantee independence between the litterbags. The metal
f 13



Table 1. Mean environmental characteristics of the study sites measured during leaf exposure.

Streams Sites Altitude
(m a.s.l.)

Stream
order

Distance from
the source (km)

Water depth (m) Water width (m) Dominant
Substrate

Akoumbegue C 641 1 0.7 0.24 ± 0.12 2.93 ± 1.11 Mud

A 643 2 5.86 0.31 ± 0.09 3.04 ± 0.86 Sand
Ibe-Mfeme IM 644 1 1.3 0.30 ± 0.17 8.01 ± 9.10 Mud
Kongolo K1 645 3 3.9 0.29 ± 0.06 3.88 ± 0.70 Sand

K2 638 3 7.35 0.32 ± 0.13 2.95 ± 0.49 Sand
K3 634 3 9.65 0.68 ± 0.29 7.52 ± 0.43 Mud

Nloumou AN1 681 1 1.85 0.17 ± 0.05 2.68 ± 0.37 Sand
AN2 645 1 3.4 0.40 ± 0.09 2.03 ± 0.53 Sand
N 643 3 8.35 0.24 ± 0.06 3.56 ± 0.46 Sand

Nsoe-Mekok NM 647 1 0.9 0.14 ± 0.10 2.99 ± 4.01 Rock
Ossoe-Nkoro ON 645 1 1.5 0.23 ± 0.06 3.47 ± 2.11 Mud
Zoetoupsi OB 651 1 2.7 0.25 ± 0.08 1.29 ± 0.23 Mud

Z 653 1 0.9 0.32 ± 0.13 2.23 ± 0.43 Mud

Fig. 1. Map of the study area showing the sampling and experimentation stations.
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stakes were deeply anchored to the bottom of the moderately
flowing streams using a hammer, and the litterbags were
stabilised by putting stones on the cord just upstream of the
knot. Five pairs per sampling station were spaced out by 10m
linear distance from each other. This study took place between
on February/March 2020 in the North town and on August
2020 in the South.

The litterbags were removed after 15 days of exposures.
The macroinvertebrates that escaped when the coarse-mesh
litterbags were collected were recovered using of kick net
downstream of the litterbags. The litterbags were packaged
individually in zip-lock plastic bags containing a little water
from the stream, and stored in a cooler at ambient temperature
for laboratory analysis.

The leaves from the exposed litterbags were rinsed one by
one under running tap water to remove sediment. Accumulated
organic particles and macroinvertebrates were collected in a
0.5mm mesh sieve under a binocular microscope. The
macroinvertebrates taken from the coarse-mesh litterbags
were preserved in ethanol 70° and identified. Then, the litter
batches were sub-sampled for laboratory culture of hypho-
mycetes. Sub-samples were taken from five representative
leaves of each batch. Each sub-sample consisted of five 10–
12mm diameter discs (one per leaf) taken avoiding the midrib.

After sub-sampling, the remaining litter was oven-dried at
60 °C for 72 h, and weighed at room temperature after cooling
in a desiccator to determine the dry mass (Piscart et al., 2011).

2.4 Identification of aquatic hyphomycetes associated
with litter

Each batch of 5 freshly cut discs was placed in a 100mL
wide-necked Erlenmeyer flask containing 25mL of filtered
(0.45mm of porosity) stream water from the litter. The
Erlenmeyer flasks were placed at ambient laboratory tempera-
ture (20–25 °C) for 48 h under rotary shaking to induce
sporulation of the aquatic hyphomycetes that had colonised
the discs. The resulting spore suspension was fixed with 2.5mL
of formalin (35%) and stored in a tube containing 35mL of
rinsing water from the Erlenmeyer flask. Ten mL of suspension
were filtered through a cellulose membrane (0.45mm of
porosity) that was soaked in a vital dye � cotton blue � and
mounted between slide and coverslip for observation under
UpEdu® and Bresser® microscopes. Hyphomycetes were
identified and counted based on the literature (Nilsson, 1964;
Alasoadura, 1968; Iqbal, 1971; Ingold, 1975; Descals and
Webster, 1982;Marvanová andDescals, 1985;Chen et al., 2000;
Gulis et al., 2005; Braun, 2009).

2.5 Benthic macroinvertebrate sampling

Benthic macroinvertebrates were also collected in the
streams before and at the end of the exposure period, with five
replicates per kick-net sample in each sites following the
multihabitat approach (Barbour et al., 1999; Stark et al., 2001).
The 30-cm side kick-nets were square-shaped and equipped
with a conical net of 500mm mesh size over a surface area of
0.6 m2. An equivalent of 3 m2 was sampled in each sampling
station. The organisms retained in the net were sorted and fixed
in formalin 10%, and then cleaned and preserved in ethanol 70°.
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All the specimens collected with the kick-net and those
associated with the leaf litter were identified using a Bresser®

ScienceETD-101binocularmicroscope at the family level using
appropriate identification keys (Poisson, 1929; Durand and
Levêque, 1980; Dethier, 1981; Testard, 1981; Day et al., 2002;
De Moor et al., 2003, 2009; Stals and de Moor, 2007; Lowe,
2009).

2.6 Data analysis

Breakdown rates Kc (coarse-mesh litterbags) and Kf (fine-
mesh litterbags) were calculated using the negative exponen-
tial decay model (Eq. (1)):

k ¼ ½lnðWt=WoÞ�
t

; ð1Þ

where t is the exposure time (days),Wt the weight at the end of
exposure and W0 the initial weight.

The rate (K) was expressed in g day�1 for both coarse mesh
bags (Kc) and fine mesh bags (Kf). The Kc to Kf ratio was
calculated to show the relative contributions of shredders and
microbes. The litter fragmentation rate by shredder (lF) was
calculated from Kc and Kf according to Lecerf (2017) (Eq. (2)):

lF ¼ Kc � Kf � Kc

lnðKf Þ � lnðKcÞ : ð2Þ

We performed a three-way nested ANOVA using the
breakdown rates as response variables, with site nested in
streams and season as a random factor to test the variability of
the breakdown rates among streams and across seasons.
Pairwise comparisons were tested using Fisher's LSD test.

The taxonomic richness of hyphomycetes (Sh) and macro-
invertebrates (Sm) and the mean abundance (Q) and Shannon-
Weaver diversity (H') ofmacroinvertebrateswere also computed
for each site. Thepercentageof each trophicguildwascalculated
based on the literature (Cummins, 1973; Tachet et al., 2010;
Masese et al., 2014b; Ramírez and Gutiérrez-Fonseca, 2014).
We also performed a two-way nested ANOVA using biocenotic
indices as response variables, with sites nested in streams to test
the variability of biocenotic indices among sites and streams,
with Fisher's LSD tests for pairwise comparisons.

We compared the sampling methods (litterbags vs. kick
sampling) by comparing the composition of the macro-
invertebrate communities collected by kick sampling with
those collected in the litterbags using non-metric multidimen-
sional scaling (NMDS) and two-way nested ANOSIM with
habitat (litterbags vs. kick-net samples) nested in Stream.
These analyses were made with Primer® 6 statistical software.

The links between environmental factors and breakdown
rates were studied using a principal component analysis
(PCA). Moreover, Pearson correlations between environmen-
tal factors and breakdown rates were tested.

3 Results

3.1 Breakdown rates

The breakdown rates were slightly low in stations AN2 and
K1, but no statistical difference was observed between sites for
f 13



Fig. 2. Mean values (±SD) of total decomposition Kc (black bars) and microbial decomposition Kf (open bars) in each site for the seven streams
(AK: Akoumbegue; IB: Ibe-Mfeme; KO: Kongolo: NL: Nloumou; NS: Nsoe-Mekok; OS: Ossoe-Nkoro; ZO: Zoetoupsi). For N, several bags
destroyed and the SD was not computed.

Table 2. Mean values (± SD) of biocenotic indices in each site for aquatic hyphomycetes, macroinvertebrates from litterbags and kick
samplings.

Streams Sites Hyphomycetes Macroinvertebrates in Litterbags Macroinvertebrates in Kick samplings

Richness (Sh) Richness Diversity Abundance Richness Diversity Abundance

Akoumbegue A 6 2.2 ± 1.6 12.4 ± 15.2 0.48 ± 0.48 15.8 ± 1.9 2.6 ± 0.1 144 ± 74

C 3 1.8 ± 0.4 6 ± 2.9 0.63 ± 0.41 11.3 ± 2.4 2.3 ± 0.2 53 ± 21
Ibe-Mfeme IM 3 3 ± 1.9 5.6 ± 3 1.22 ± 1.01 12.6 ± 5.1 2.3 ± 0.4 56 ± 26
Kongolo K1 1 2 ± 1.9 5.6 ± 3.8 0.78 ± 0.74 15.4 ± 2.1 2.5 ± 0.1 109 ± 43

K2 5 4 ± 1.4 9.8 ± 5.7 1.73 ± 0.53 10.0 ± 4.1 2.1 ± 0.4 48 ± 26
K3 2 2.2 ± 1.3 3.4 ± 1.3 0.9 ± 0.89 8.4 ± 1.8 2.0 ± 0.2 73 ± 51

Nloumou AN1 3 5.2 ± 1.5 18 ± 11.2 1.54 ± 0.39 14.2 ± 2.9 2.5 ± 0.2 156 ± 98
AN2 4 2.6 ± 2.4 6.2 ± 5.9 1.97 ± 0.2 13.8 ± 2.2 2.4 ± 0.1 111 ± 54
N 5 0.6 ± 1.3 0.6 ± 1.3 1.58 ± 0 11.0 ± 4.1 2.2 ± 0.4 42 ± 20

Nsoe-Mekok NM 3 1.4 ± 0.5 5.8 ± 2.4 0.37 ± 0.5 14.4 ± 4.4 2.4 ± 0.4 165 ±57
Ossoe-Nkoro ON 7 1.4 ± 1.1 5.8 ± 6.6 0.44 ± 0.52 12.0 ± 1.2 2.3 ± 0.1 62 ± 27
Zoetoupsi OB 9 2.2 ± 1.8 9.4 ± 15.5 0.9 ± 0.06 12.2 ± 4.0 2.3 ± 0.3 40 ± 13

Z 1 0.8 ± 0.4 1.2 ± 0.8 0 ± 0 8.8 ± 4.5 1.9 ± 0.6 47 ± 31
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total breakdown Kc (Fig. 2, F6,44 = 1.63; P= 0.162). However,
the microbial breakdown rate Kf varied slightly (Fig. 2,
F6,44 = 2.28; P= 0.053): it was higher in site AN1 than in most
of the other sites (P-values < 0.05), except K3, N, NM, and
ON (Tab. 2).

The overall breakdown rates Kf and Kc did not differ
(Fig. 2; paired samples t-test, P= 0.506). The Kc/Kf ratio
ranged between 0.72 at AN1 and 2.03 at AN2, but there was no
significant difference between sites, whether between theKc/Kf

ratios (F6,43 = 0.73; P= 0.63) or the litter fragmentation rates
by shredders lF (F6,44 = 1.64; P= 0.158).

Similarly, the overall breakdown rates were similar
between seasons, except for lF (F1,44 = 4.32; P= 0.043).
The rate was higher in K3 than in all other sites (P-values
< 0.045) except AN2 and N.

The specific richness of hyphomycetes associated with the
litter varied sharply between sites from one species (stations Z
and C) to nine species (station ON) (Tabs. 2 and S1). Similarly,
the mean values of all biocenotic indices for benthic
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macroinvertebrates (Tab. 2) significantly differed between
sites (P-values < 0.027) but not between streams (P-values >
0.09). The macroinvertebrate community was dominated by
shredders (mainly Atyidae) and predators in most of the sites
(Tab. 3), except K3, ON, OB, and Z where the proportion of
shredders was relatively low. In these sites, shredders were
replaced by collectors (K3, ON and Z), except for OB.
3.2 Comparison of the benthic macroinvertebrates
from kick sampling and litterbags

The results on the NMDS analysis (Fig. 3) showed a strong
dissimilarity between the macroinvertebrate communities
collected by kick sampling and those collected in the litterbags
(ANOSIM R=0.854, P= 0.001). The invertebrate community
in litterbags is much reduced both in terms of abundance and
diversity (Tab. 2). The trophic guilds are dominated by
scrapers (mainly Atyidae) and predators (Odonata and
f 13



Table 3. Mean percentage (± SD) of trophic guilds between the benthic macroinvertebrates in litterbags and in kick samplings.

Streams Sites Macroinvertebrates in Litterbags Macroinvertebrates in Kick samplings

Shredders

%

Collectors

%

Predators

%

Scrapers

%

Herbiv.

%

Shredders

%

Collectors

%

Predators

%

Scrapers

%

Herbiv.

%

Akoumbegue A – 96.4 ± 5 2.4 ± 1.1 2 ± 4.5 0.5 ± 1.2 5 ± 5.6 7.1 ± 5.2 22.7 ± 9.7 62.7 ± 13.8 2.6 ± 5.2

C 10 ± 22.4 83.1 ± 13.4 – 8.9 ± 19.9 11.3 ± 13.1 6.8 ± 5.2 7.6 ± 3.2 41.4 ± 9.6 43.7 ± 14 0.6 ± 1.2

Ibe–Mfeme IM 8.9 ± 14.5 72.4 ± 28.8 – 3.3 ± 7.5 18.7 ± 18.8 5.1 ± 3.6 19.5 ± 3.8 47.0 ± 18.9 27.8 ± 16.3 0.6 ± 1.4

Kongolo K1 – 55 ± 44.7 – 5.6 ± 6.6 – 0.5 ± 1.1 10.6 ± 10.9 27.7 ± 13.9 61.2 ± 15.6 –

K2 6.7 ± 10.9 76 ± 11 2 ± 0.9 2.2 ± 5 12.3 ± 14.1 2.4 ± 3.2 4.0 ± 4.1 45.9 ± 32.4 47.7 ± 33.8 –

K3 – 72.6 ± 10.4 12.8 ± 7.4 45 ± 44.7 19.9 ± 11.8 0 ± 0 55.5 ± 27.4 33.7 ± 16.1 10.8 ± 14.7 –

Nloumou AN1 0.9 ± 2 81.1 ± 25.9 – 9.8 ± 5.8 – 8.1 ± 7.7 11.5 ± 6.9 22.9 ± 7.5 57.5 ± 8.8 –

AN2 – 83.3 ± 23.6 – – 4.4 ± 9.9 3.9 ± 2.3 7.3 ± 2.8 26.2 ± 18.7 59.9 ± 19.7 2.7 ± 2.9

N 66.7 ± 0.0 33.3 ± 0.0 – – – 2.2 ± 3.2 6.5 ± 8.8 62.6 ± 14.0 28.4 ± 15.8 0.3 ± 0.7

Nsoe–Mekok NM 6.7 ± 14.9 53.3 ± 50.6 0 ± 0 – 40 ± 54.8 5.6 ± 8.6 1.0 ± 0.7 22.9 ± 13.3 70.3 ± 15.7 0.2 ± 0.5

Ossoe–Nkoro ON – 97.1 ± 5.9 5.9 ± 2.9 – – 1.7 ± 2 25.9 ± 16.9 49.8 ± 25.3 17.4 ± 16.9 0.5 ± 1.1

Zoetoupsi OB 8.3 ± 16.7 75.1 ± 11.9 4.1 ± 2 6.3 ± 12.5 8.3 ± 16.7 1.1 ± 1.5 11.0 ± 9.4 69.5 ± 14.3 22.7 ± 27.6 0.4 ± 0.8

Z – 100 ± 0.0 – – – 2.5 ± 3.7 23.8 ± 15.3 56.2 ± 25.6 17.2 ± 14.7 0.3 ± 0.6

Kick samplings

Li�erbags

2D Stress: 0.14

Fig. 3. Non-metric multidimensional scaling (NMDS) ordination of benthic macroinvertebrates in coarse-mesh litterbags (dark circles) and
kick-net samples (open circles).
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Heteroptera) in kick samplings whereas litterbags harbored
mainly collectors (Chironomidae) (Tabs. 3 and S4). Finally, the
relative abundance of shredders were low in all samples.
3.3 Analysis of the links between breakdown rates
and environmental factors

The first two principal components of the PCA explained
36.5% and 20.7% of the total variance, respectively (Fig. 4).
The first component was mainly explained by the longitudinal
position of the sites, along with electrical conductivity
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(19.4%), water depth (17.9%), and the distance to the source
(17.3%), water temperature (10.6%), and the channel width
(10.5%). The second component was mainly explained by the
meteorological factors with the % humidity (24.7%), water
temperature (11.4%), and also the current velocity (11.5%).

The total breakdown rate (Kc) and the microbial decomposi-
tion rate (Kf) projected on the PCAwere not clearly correlated
with the principal components. This result was confirmed by the
correlation matrix (Fig. 5) where only Kc was positively
correlated with the distance to the source (P= 0.0134) and
tended to be correlated with the pH (P= 0.063), whereasKfwas
not correlated with environmental factors.
f 13



Fig. 4. Results of the PCA analysis with the correlation circle showing the correlations among the 10 environmental factors according to the
different environmental factors (a). The breakdown rates Kc (green arrow), Kf (blue arrow) and lF (red arrow) are projected as quantitative
supplementary variables. Black circles, distribution of the barycentres of each stream; solid lines link station to its different streams at each
season (b). CV: current velocity; %Hum: percentage of air humidity; DO: dissolved oxygen; Lux: luminosity; WW: water width; WD: water
depth; Cond: conductivity; Lambda: fragmentation rates; Dist: distance to the source.

Fig. 5. Pearson correlations between decomposition metrics (Kc, Kf, lF) and environmental factors. The values represent the correlation
coefficients. The coloured squares represent the significant coefficients (red or blue, P-value< 0.05) according to the scale of the value indicated
on the right of the correlogram.
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4 Discussion

The total breakdown rate remained similar across seasons
and sites; only the microbial decomposition rate varied slightly
between sites. This lack of variability may be related to the
stability of environmental conditions in Cameroonian streams
and more or less continuous inputs of leaf litter into tropical
streams (Wantzen et al., 2008). Our sites were located in the
equatorial rainforest of Cameroon where seasonal variations of
physicochemical parameters � except hydrology � are lower
than in other climatic zones (Boulton et al., 2008). These stable
environmental conditions likely explain the stability of the leaf
litter breakdown rate. Spatial stability of the breakdown rate
has been reported in agricultural and forest streams of Kenya
(Kadeka et al., 2021). The authors explained their results by
the presence and the good quality of the riparian zones in
agricultural streams which maintain the quality of instream
habitats, the canopy cover and the standing stocks of organic
matter. These findings are congruent with our results obtained
in an area free of significant anthropogenic pressure.

The total breakdown rate of Funtumia africana leaves
found in our study (0.042 ± 0.006 g d�1) is similar to those
found in African streams, using other types of leaves and
within the same range as in temperate climates, if we consider
the tough species (e.g. Q. robur, F. salvatica, and C. sativa).
However, the breakdown rates measured in Africa were higher
than those measured in South America, but much lower than in
Asia (Tab. 4). We also confirm the prominent role played by
microbial activity, whereas the contribution of invertebrate
shredders (lF) is rather limited (Tab. 4). The weak role of
invertebrate shredders is confirmed by the low Kc/Kf ratio
(1.21 ± 0.34) in our study and in other studies in Africa
(Tab. 4). The contribution of invertebrates is commonly absent
or scarce in tropical streams (Dobson et al., 2002; Boyero
et al., 2021). The reason for this is the high temperature that
limits the development of many shredders (Boyero et al.,
2021). Consequently, shredder diversity is negatively related
with temperature (Boyero et al., 2011b), whereas high
temperature promotes microbial activity (Dobson et al.,
2002; Boyero et al., 2011a, 2011b, 2015b; Tenkiano and
Chauvet, 2017), especially bacterial activity (Ferreira et al.,
2012).

We noted a significant and positive correlation between the
total breakdown rate (Kc) and the distance from the source and
the pH, suggesting a higher contribution of invertebrate
shredders downstream. This correlation could be explained by
the role play by macrocrustacean shredders such as decapod
Palaemonidae (Pringle et al., 1993; Pringle and Hamazaki,
1998; Andrade et al., 2017) or freshwater crabs (Dobson et al.,
2004), which play major roles in leaf breakdown in tropical
streams where insect shredders are scarce or absent. Indeed,
the abundance of such crustaceans increases in the lower parts
of catchments (Saito et al., 2012; Jacobsen et al., 2008).
Unfortunately, our data do not validate this hypothesis because
these invertebrates are difficult to catch by kick sampling.
Shredders can be abundant in our site, but their numbers are
often underestimated by net samplings (Covich, 1988;
Dobson, 2004; Dobson et al., 2007; Boulton et al., 2008;
Camacho et al., 2009; Kadeka et al., 2021). Moreover, the
potential underestimation of the shredder abundance is also
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observed by the invertebrate community sampled in litter bags
that are very different than community if kick-samplings,
especially by the lack of invertebrate shredders in litter bags in
comparison with benthic kick samplings. The lack of
correlation between invertebrate in litter bags and those if
benthic layer was already been observed in a very different
context in Europe (Piscart et al., 2009). These authors
observed a stronger correlation between the leaf litter
breakdown rates and the invertebrate community in benthic
layer than with invertebrates in litter bags. This result indicates
with Serpa et al. (2020) and Sena et al. (2021) that
invertebrates involved in leaf litter breakdown don't stay in
litter bags but move from another microhabitat to consume
leaf.

Microbial activity appeared as the driving force of tropical
leaf litter breakdown. However, the influence of hyphomycetes
species richness on the breakdown rate was negligible and no
significant difference was observed between the breakdown
rates in the different litterbags. The number of species (1–9
species) found on Funtumia africana leaves was lower than the
number reported by Tenkiano and Chauvet (2017) on leaf litter
in Guinean streams (18 species). Similar observations were
reported by Bergfur and Sundberg in 2014. Ferreira et al.
(2012) and David et al. (2024) found that the number of species
and fungal activity were lower in tropical streams than in
temperate streams, probably due to the high temperature.
These authors also showed that litter colonisation by
hyphomycetes decreases after a few days in tropical streams
while it increases in temperate streams. This may have had an
impact on the number of hyphomycete species found in our
study. In addition, the steadily high temperature of tropical
waters favours bacterial activity. Abelho et al. (2005) found a
higher contribution of bacteria to microbial respiration,
especially in the last stage of litter breakdown in a tropical
stream.

By limiting shredder invertebrates and promoting micro-
bial activity, temperature is the main factor controlling the
overall breakdown of leaf litter (Boyero et al., 2021). Similar
observations have been reported in non-African tropical
streams, particularly in southeastern Asia (Yule et al., 2009),
South America and Australia (Boulton et al., 2008; Boyero
et al., 2015b; Cararo et al., 2023).

In conclusion, the contribution of shredders to Funtumia
africana breakdown is very weak in the streams of Cameroon.
These results confirm those of previous studies carried out in
other parts of the world, where the breakdown process is
essentially microbial in tropical streams, particularly in
Afrotropical streams. It is much lower in Cameroonian
streams than in tropical Asian streams but higher than in South
American streams. However, these results need to be put into
perspective by the lack of information about the quality of
leaves used in the previous studies. A meta-analysis of the data
in the literature would be necessary to gain a better
understanding of the mechanisms underlying this variability
between tropical environments. Finally, our study showed that
the leaf litter breakdown rates in Cameroon are mainly
controlled by the distance from the source with also a potential
contribution of the pH. Acidic waters may limit the breakdown
rate, but the distance from the source increases leaf breakdown
in Cameroonian forest streams. However, the link between
f 13



Table 4. Total decomposition rate (Kc) and ratio of total decomposition rate to microbial decomposition rate (Kc/Kf) in some tropical and
temperate forest streams.

Countries Regions Leaf species Kc (g.d
�1) Kc/Kf References

Cameroon Central Africa Funtumia africana 0.035–0.056 1.21 Present study

Guinea West Africa Albizia zygia 0.001–0.051 1.51 Tenkiano and Chauvet, 2017
Guinea West Africa Millettia zechiana 0.062–0.080 1.42 Tenkiano and Chauvet, 2017
Kenya East Africa Vernonia myriantha 0.031–0.043 1.38 Kadeka et al., 2021
Kenya East Africa Syzygium cordatum 0.004–0.009 1.1 Kadeka et al., 2021
Kenya East Africa Eucalyptus globulus 0.006–0.01 1.36 Kadeka et al., 2021
Kenya East Africa Neoboutonia macrocalyx 1.65 Masese et al., 2014b
Kenya East Africa Eucalyptus globulus 1.48 Masese et al., 2014b
Kenya East Africa Syzygium cordatum 1.52 Masese et al., 2014b
Kenya East Africa Eucalyptus saligna 0.01 � 0.04 – Tsisiche et al., 2019
Kenya East Africa Neoboutonia macrocalyx 0.004–0.022 – Tsisiche et al., 2019
Kenya East Africa Vangueria madagascariensis 0.047 – Dobson et al., 2004
Kenya East Africa Dombeya goetzenii 0.010 – Dobson et al., 2004
Kenya East Africa Syzygium cordatum 0.022 – Dobson et al., 2004
Kenya East Africa Rhus natalensis 0.026 – Dobson et al., 2004
Kenya East Africa Syzygium cordatum 0.001 – Mathooko et al., 2000a
Kenya East Africa Dombeya goetzenii 0.711–0.789 – Mathooko et al., 2000b
Ouganda East Africa Neoboutonia macrocalyx 3.82 Fugère et al., 2020
Brazil South America Myrcia guyanensis 0.006–0.007 – Moretti et al., 2007
Brazil South America Ocotea sp. 0.008–0.009 – Moretti et al., 2007
Argentina South America Salix humboldtiana 0.012 – Capello et al., 2004
Colombia South America Tessaria integrifolia 0.009–0.029 – Rueda-Delgado et al., 2006
Colombia South America Symmeria paniculata 0.001–0.010 – Rueda-Delgado et al., 2006
Colombia South America Cecropia latiloba 0.009–0.031 – Rueda-Delgado et al., 2006
Thailand South Asia Acacia mangium 0.068 – Parnrong et al., 2002
Thailand South Asia Eucalyptus camaldulensis 0.075 – Parnrong et al., 2002
Thailand South Asia Hevea brasiliensis 0.064 – Parnrong et al., 2002
France Temperate Alnus glutinosa 0.035–0.11 3.1–12.5 Rivière 2015
France Temperate Castanea sativa 0.017–0.038 1.69–4.7 Rivière 2015
France Temperate Quercus robur 0.010–0.017 0.9– 2.86 Rivière 2015
France Temperate Fagus sylvatica 0.007–0.068 1.7–17.8 Piscart et al., 2009
Portugal Temperate Alnus glutinosa 0.047 � 0.052 2.76 Ferreira et al., 2012
Portugal Temperate Castanea sativa 0.03 3.1 Ferreira et al., 2012
Portugal Temperate Quercus robur 0.03 4.6 Ferreira et al., 2012
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breakdown rates and the environmental factors tested in our
study remains quite limited, and further analyses would be
required to gain a better understanding of leaf litter recycling in
African rainforest streams.
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Supplementary Material

Table S1. Hyphomycetes associated with Funtumia africana
(Benth) Stapf (Apocynaceae) leaf litter in fine-mesh litterbags
exposed in the streams.

Table S2. Values of breakdown rates and environmental factors
(Kc: rate in coarse mesh, Kf: rate in fine mesh, lF: fragmentation of
leaf litter, Dist: distance to the source, CV: current velocity, WW:
water width, WD: water depth, %Hum: percentage of air humidity,
Lux: luminosity, Wtemp: water temperature, pH: potential Hydrogen,
Cond: conductivity and DO: dissolved oxygen).

Table S3. Macroinvertebrates collected from kick samplings in
the streams. Assignment of macroinvertebrates into FFGs according
to literature: Sh = Shredders; Sc = Scrapers; Co = Collectors; Fi =
Filters; He = Herbivores; Pr = Predators; Om = Omnivores.

Table S4. Macroinvertebrates collected from kick samplings in
the streams. Assignment of macroinvertebrates into FFGs according
to literature: Sh = Shredders; Sc = Scrapers; Co = Collectors; Fi =
Filters; He = Herbivores; Pr = Predators; Om = Omnivores.
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